If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+3200x-159600=0
a = -9; b = 3200; c = -159600;
Δ = b2-4ac
Δ = 32002-4·(-9)·(-159600)
Δ = 4494400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4494400}=2120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3200)-2120}{2*-9}=\frac{-5320}{-18} =295+5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3200)+2120}{2*-9}=\frac{-1080}{-18} =+60 $
| 2/3=3/4x | | 30=8-x | | 5-1/6w=-7 | | 2/3=-3/4k | | 10y+100=180 | | (-x+2)/3=30 | | |x-6|=-6 | | 1.4x=7.2-x | | 1/2=1/3k | | 2x+7-6x+1=5x+6 | | 8-(3x-2)=290 | | -2(3x+4)=-3(4x+1) | | -5=-10x | | -8p-5(6-3p)=4(p-4)-8 | | 8.3+7.9=n | | 6x-5(x-8)=-17 | | 2(p-3)=18 | | 0.2910-5c0=5c-16 | | 5√x-2=25 | | 9-z=11 | | x10=5 | | -2x-5(4x+14)=-290 | | 180-(18x+22)=90-(9x-5) | | 9(2x+1)-4(x-6)=6(2x+1)+5(x-6) | | H(t)=-4.9t^2+9000 | | H(t)=-4 | | 6n-9-3n=3n-9 | | x-1/3-5=x-5/2 | | F=9/8(n-51) | | x-3-3x=7x+8-8x | | p+(0.05p)=33.60 | | 1/24y^2+1/4y+1/3=0 |